ÓñÃÀÈË´«Ã½

Outils pour utilisateurs

Outils du site


working

¶Ù¾±´Ú´Úé°ù±ð²Ô³¦±ð²õ

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentesRévision précédente
Prochaine révision
Révision précédente
working [2020/10/27 21:29] – kalinin0working [2021/02/24 13:49] (Version actuelle) – kalinin0
Ligne 1: Ligne 1:
 ====== Tropical working group seminar ====== ====== Tropical working group seminar ======
 +---- 
 +  2021, February 26, Friday, 15:00-16:00
 +  Rue du Conseil-Général 7 
 +  
 +  Weronika Czerniawska (UNIGE)
 +**Tropical geometry and Newton polygons for p-adic numbers**
 +---- 
 +  2020, Thursday, December 17, 14:30-15:30
 +  Gleb Smirnov (ETH Zürich)
 +  
 +  Meeting ID: 971 8147 2717
 +  Passcode: (the Euler characteristic of the K3-surface)
 +  
 +**Running through Seiberg-Witten invariants**
 +
 +This is a mini-course on four-dimensional gauge theory.
 +
 +In the first lecture, we will introduce spin and complex spin structures
 +and, time permitting, the Dirac operator in four dimensions.
 +---- 
 +  2020, Friday, December 4, 14:00-15:00
 +  Gleb Smirnov (ETH Zürich)
 +  
 +  Meeting ID: 971 8147 2717
 +  Passcode: (the Euler characteristic of the K3-surface)
 +  
 +**Running through Seiberg-Witten invariants**
 +
 +This is a mini-course on four-dimensional gauge theory.
  
 +In the first lecture, we will introduce spin and complex spin structures
 +and, time permitting, the Dirac operator in four dimensions.
 ---- ----
-  2020, Thursday19 November, Thomas Blomme, 14:30+  2020, Friday20 November, Thomas Blomme, 14:30
      
 **Refined count of rational tropical curves in arbitrary dimension** **Refined count of rational tropical curves in arbitrary dimension**
Ligne 8: Ligne 39:
 In this talk we will introduce a refined multiplicity for   In this talk we will introduce a refined multiplicity for  
 rational tropical curves in any dimension. This multiplicity generalizes  rational tropical curves in any dimension. This multiplicity generalizes 
-the multiplicity of Block-G\"ottsche for planar tropical curves. We also +the multiplicity of Block-³Òö³Ù³Ù²õ³¦³ó±ð for planar tropical curves. We also 
 show that the count of solutions to some general tropical enumerative  show that the count of solutions to some general tropical enumerative 
 problem using this new multiplicity leads tropical refined invariants,  problem using this new multiplicity leads tropical refined invariants, 
 hinting toward the existence of classical refined invariants for  hinting toward the existence of classical refined invariants for 
 classical rational curves. classical rational curves.
 +
 +----
 +  2020, Thursday, November 19, 14:30-15:30
 +  Gleb Smirnov (ETH Zürich)
 +  
 +  Meeting ID: 971 8147 2717
 +  Passcode: (the Euler characteristic of the K3-surface)
 +  
 +**Running through Seiberg-Witten invariants**
 +
 +This is a mini-course on four-dimensional gauge theory.
 +
 +In the first lecture, we will introduce spin and complex spin structures
 +and, time permitting, the Dirac operator in four dimensions.
 +----
 +  2020, Thursday, November 13, 14:00-15:00
 +  Gleb Smirnov (ETH Zürich)
 +  
 +  Meeting ID: 971 8147 2717
 +  Passcode: (the Euler characteristic of the K3-surface)
 +  
 +**Running through Seiberg-Witten invariants**
 +
 +This is a mini-course on four-dimensional gauge theory.
 +
 +In the first lecture, we will introduce spin and complex spin structures
 +and, time permitting, the Dirac operator in four dimensions.
 +
 +----
 +  2020, Thursday, November 5, 14:30-15:30 
 +  2020, Friday, November 6, 14:00-15:00
 +  Gleb Smirnov (ETH Zürich)
 +  
 +  Meeting ID: 971 8147 2717
 +  Passcode: (the Euler characteristic of the K3-surface)
 +  
 +**Running through Seiberg-Witten invariants**
 +
 +This is a mini-course on four-dimensional gauge theory.
 +
 +In the first lecture, we will introduce spin and complex spin structures
 +and, time permitting, the Dirac operator in four dimensions.
 ---- ----
   2020, Thursday, 29 October, Mikhail Pirogov, 14:30   2020, Thursday, 29 October, Mikhail Pirogov, 14:30
working.1603830557.txt.gz · Dernière modification : de kalinin0

Sauf mention contraire, le contenu de ce wiki est placé sous les termes de la licence suivante :