ÓñÃÀÈË´«Ã½

Outils pour utilisateurs

Outils du site


tropicalsand

¶Ù¾±´Ú´Úé°ù±ð²Ô³¦±ð²õ

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentesRévision précédente
Prochaine révision
Révision précédente
tropicalsand [2015/05/03 23:51] – kalinin0tropicalsand [2017/03/10 23:16] (Version actuelle) – kalinin0
Ligne 4: Ligne 4:
  
  
-**Tropical curves in $2$-dimensional sandpile model, Nikita KalininMikhail Shkolnikov.**+You can see our two talks on the BIRS-CMO conference Sandpiles Groups in Oaxaca 2015,
  
 +http://www.birs.ca/events/2015/5-day-workshops/15w5119/videos/watch/201511181000-KALININ.html
  
-AbstractWe consider the sandpile model on a part of the square lattice, bounded by a polygonWe modify the maximal stable state by adding a grain of sand at each of the $n$ fixed points: the consequent relaxation produces pictures where we can see tropical curvesThese curves pass through the same $n$  fixed points and +http://www.birs.ca/events/2015/5-day-workshops/15w5119/videos/watch/201511181100-Shkolnikov.html
-solve a version of the Steiner tree problem: minimization of {\it tropical symplectic area}. In order to show this, we develop several technics to deal with particular integer-valued solutions of +
-certain Dirichlet problems and to study the continuous version of the considered +
-relaxation which reveals an interesting dynamics on polytopes.+
  
-Keywords:Tropical curves, sandpile model, tropical dynamics, discrete harmonic functions, Steiner problem. 
  
-{{:Sand.pdf|}}+Our presentations: {{:oaxaca.pdf|}} {{:oaxacanovember15_proofs.pdf|}}
  
 +See the simulation on Youtube: https://www.youtube.com/watch?v=7hC-vUuhb7c
  
-**Tropical series and sandpiles in arbitrary convex domains, Nikita Kalinin, Mikhail Shkolnikov.** 
  
-This is a draft of the second part of the article entitled ``Tropical curves +**TROPICAL ANALYTIC CURVES IN 2-DIMENSIONAL SANDPILE MODEL, Nikita Kalinin, Mikhail Shkolnikov.**
-in $2$-dimensional sandpile model''. Here we study the case of an +
-arbitrary boundary.+
  
-{{:sandnew.pdf|}} 
  
-{{::sandcircle1.png?200|}}     +AbstractWe consider the sandpile model on a convex part of the square lattice. We modify the maximal stable state by adding a grain of sand at each of the $n$ fixed pointsthe consequent relaxation produces pictures where we can see tropical curvesThese curves pass through the same $n$ fixed points and solve a version of the Steiner tree problem: minimization of {\it tropical symplectic area}. In order to show this, we develop several techniques to deal with particular integer-valued solutions of 
 +a certain Dirichlet problems. The continuous version of the considered relaxation reveals an interesting dynamics on polytopes.
  
-and in the limit we always obtain something like      +Keywords:Tropical curves, sandpile model, tropical dynamics, discrete harmonic functions, Steiner problem, tropical symplectic area.
  
-{{::sandcircle2.png?200|}}+{{::genevamay15.pdf|Presentation}}
  
-Soon, we will upload here code and more pictures.+https://arxiv.org/abs/1509.02303
  
-For more information about sand read http://people.reed.edu/~davidp/sand/lit/literature.html+https://arxiv.org/abs/1502.06284
  
 +
 +
 +{{::sandcircle1.png?200|}}, and in the limit we always obtain something like : {{::sandcircle2.png?200|}}
 +
 +
 +
 +For more information about sand read http://people.reed.edu/~davidp/sand/lit/literature.html and http://nautil.us/issue/23/dominoes/the-amazing-autotuning-sandpile
 +
 +====== Code ======
 +
 +1. Install Anaconda http://continuum.io/downloads
 +
 +or manage to use the package Tkinter by yourself. 
 +
 +2. Use the file {{:sandsimulation.pdf|}}, change its extension to .py, i.e. sandsimulation.py. Open it in "Spyder-app" which is provided within Anaconda.
 + 
 +3. On the top part of the file you can change some parametres, choose the boudary etc. But you can start by pressing F5 (run file),  clicking and observing what happens.  
 +
 +4. Basically, we start from the grid with 3 grains of sand everywhere. When you left-click on the left half of the screen you add an additional grain of sand. White color means that at this point we have 3 grains of sand. 
 +
 +5. You can rescale the picture if you left-click in the top half of the right half of the screen. You can undo return to the previous picture by clicking in the bottom half of the right half of the screen. 
tropicalsand.1430689887.txt.gz · Dernière modification : de kalinin0

Sauf mention contraire, le contenu de ce wiki est placé sous les termes de la licence suivante :