ÓñÃÀÈË´«Ã½

Outils pour utilisateurs

Outils du site


start

¶Ù¾±´Ú´Úé°ù±ð²Ô³¦±ð²õ

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentesRévision précédente
Prochaine révision
Révision précédente
start [2024/12/08 11:36] – thomas2start [2025/02/18 14:56] (Version actuelle) – [Seminars and conferences] g.m
Ligne 8: Ligne 8:
 Johannes Josi (February 2018). Johannes Josi (February 2018).
  
-Current members: Thomas Blomme, Francesca Carocci, Aloïs Demory, Gurvan Mevel, [[Grigory Mikhalkin|Grigory Mikhalkin]], Antoine Toussaint.+Current members: Thomas Blomme, Francesca Carocci, Aloïs Demory, Gurvan ²Ñé±¹±ð±ô, [[Grigory Mikhalkin|Grigory Mikhalkin]], Antoine Toussaint.
  
 Alumni: Ivan Bazhov, Johan Bjorklund, Rémi Crétois, Weronika Czerniawska, Yi-Ning Hsiao, Jens Forsgard, Maxim Karev, Ilya Karzhemanov, Sergei Lanzat, Michele Nesci, Alina Pavlikova, Mikhail Pirogov, Johannes Rau, Arthur Renaudineau. Alumni: Ivan Bazhov, Johan Bjorklund, Rémi Crétois, Weronika Czerniawska, Yi-Ning Hsiao, Jens Forsgard, Maxim Karev, Ilya Karzhemanov, Sergei Lanzat, Michele Nesci, Alina Pavlikova, Mikhail Pirogov, Johannes Rau, Arthur Renaudineau.
Ligne 28: Ligne 28:
 ====== Seminars and conferences ====== ====== Seminars and conferences ======
 ---- ----
 +
 +  Joé Brendel (ETHZ), Friday, Feb 21, 15h15, room 6-13 (Seminaire "Fables Géométriques")
 +
 +"Split tori in S^2 x S^2, billiards and ball-embeddability"
 +
 +Abstract: In this talk we will discuss the symplectic classification of Lagrangian tori that split as circles in S^2 x S^2. As it turns out, this classification is equivalent to playing mathematical billiards on a rectangular table. This has many interesting applications, for example to Lagrangian packing and the topological study of the space of Lagrangians. We will focus on one application in particular, asking which Lagrangian tori are contained in the image of a symplectic ball embedding. There are many open questions of more general interest surrounding this property of "ball-embeddability" of Lagrangians, which we will discuss at the end of the talk. This is joint work with Joontae Kim. 
 +
 +  Gurvan ²Ñé±¹±ð±ô (UNIGE), Wednesday, Feb 19, 14h00, room 1-07 (Seminaire "Fables Géométriques")
 +
 +"Floor diagrams and some tropical invariants in positive genus"
 +
 +Abstract : Göttche-Schroeter invariants are a rational tropical refined invariant, i.e. a polynomial counting genus 0 curves on toric surfaces, that can be computed with a floor diagrams approach. In this talk I will explain that this approach extends in any genus. This gives new invariants, related to ones simultaneously defined by Shustin and Sinichkin. I will then say few words on a quadratically enriched (and not refined !) version of this extension.
 +
 +
 +  Uriel Sinichkin (Tel-Aviv), Wednesday, Feb 5, 14h00, room 1-07 + Zoom (Seminaire "Fables Géométriques")
 +
 +"Refined Tropical Invariants and Characteristic Numbers"
 +
 +Abstract: In this talk I will present a generalization of Goettche-Schroeter and Schroeter-Shustin refined counts of tropical curves that splits to a product of terms on small fragments of the curves. This count is invariant in each of the following situations: either genus at most one, or a single contact element, or point conditions in Mikhalkin position. I will compare our results to ²Ñé±¹±ð±ô’s floor diagram approach, and discuss the specialization of the count at q=1, which recovers certain characteristic numbers. 
 +
 +
 +  Thomas Blomme (Neuchâtel), Friday, Jan 31, 14h00, room 1-07 (Seminaire "Fables Géométriques")
 +
 +"Une preuve courte d’une formule de revêtement multiple"
 +
 +Abstract: Enumérer les courbes de genre g passant par g points dans une surface abélienne est un problème naturel, et d’une difficulté surprenamment inégale en fonction du degré des courbes étudiées. Pour les degrés « primitifs », il est aisé d’obtenir une formule close par une résolution simple et explicite. Pour les classes « divisibles », une telle résolution est en revanche assez fastidieuse et souvent hors de portée. Pour autant, les invariants de ces dernières s’expriment aisément en fonction des invariants primitifs au travers de la formule de revêtement multiple, conjecturée par G. Oberdieck. Dans cet exposé, on va montrer comment la géométrie tropicale permet de prouver cette formule en esquivant toute forme concrète d’énumération.
 +
  
   Ajith Urundolil-Kumaran (Cambridge), Wednesday, Dec 11, 14h00, room 06-13 (Seminaire "Fables Géométriques")   Ajith Urundolil-Kumaran (Cambridge), Wednesday, Dec 11, 14h00, room 06-13 (Seminaire "Fables Géométriques")
start.1733654188.txt.gz · Dernière modification : de thomas2

Sauf mention contraire, le contenu de ce wiki est placé sous les termes de la licence suivante :